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THE METHOD OF AXISYMMETRIC GENERALIZED ANALYTICAL FUNCTIONS 

IN THE ANALYSIS OF DYNAMIC PROCESSES* 

V.F. PIVEN 

A method for analysing various dynamic processes based on axisymmetric 
generalized analytical functions. Such functions satisfy a system of 
equations describing axisymmetric processes, which is canonical for two- 
dimensional dynamic processes in curvilinear layers with certain non- 
homogeneous behaviour of the characteristics and also for some kinds of 
anisotropy. The method, applied to some three-dimensional 
boundary-value seepage problems in a piece~~se-homoqeneous medium, 
produced solutions of these problems in a finite form. 

1. Consider stationary and quasistationary physical processes described by a linear 
dynamic law and the dimensionless continuity equation /l/ 

v- KGT, vv= 0 (1.1) 

where v and 'p are the velocity and the velocity potential of the process. For a homogeneous 
medic, K is a constant scalar quantity, for a non-homogeneous medium, it is a function of 
the coordinates and for an anisotropic medium, it is a symmetric second-rank tensor. 

Plane-parallel processes are efficiently analysed using the method of analytical functions. 
The theory of these functions can be generalized by introducing some well-known assumptions 
/l-7/. For the axisymmetric case, there is a complete theory of functions that satisfy the 
following system of equations, which is obtained from (1.1) for K= 1 /2/: 

z-6 = CPX =q,iY, v = 'pv = -&/y (1.2) 

(sp is the stream function), This system of equations describes various physical processes 
(seepage, heat conduction, electrical conduction, etc.). The most graphic physical inter- 
pretation of these equations is provided by the axisymmetric steady flow of an ideal incom- 
pressible fluid. 

In Eqs.(l.21, the x and y axes are chosen in one of the half-planes through this axis of 
symmetry ox and u and V are the projections of the fluid velocity on these axes. 

Eqs.(l.2) describemorethan axisymmetric processes. 
pretation. 

They have a broader physical inter- 
Specifically, they may be regarded as equations of a process in a homogeneous 

layer whose thickness p is a linear function (P = y). Applying a conformal mapping defined 
by analytical functions to Eqs.f1.2), we transform them in the new variables 217 !/I to the 
form /2/ 

%r = 91/rlP, %I, = --$,lP (4.3) 

where P = f (zc~, y,) is a harmonic function and f 6% Y,) = 0 is the bosundary of the region 
where the process evolves. 

Eqs.tl.3) describe processes in layers with a harmonic variation of the bhicknessf(z,, y,). 
If =I, Yl are interpreted as isothermal coordinates of the surface, then the layer is located 
on this surface. 

The system of Eqs.(l.3) and therefore also (1.2) are obtained from Eqs.(l.l) written for 
two-dimensional processes in curvilinear layers of constant thickness with harmonic variation 
of the non-homogeneity, and also for a certain kind of anisotropy of the medium /l/. 

Using the transformation formulas of /2/, we can associate axisymmetric processes to the 
processes described by Eqs.(l.3) for P =f”(xl,yl), where n is an odd integer. 

Thus, the system of Eqs.(1.2) is canonical for various two-dimensional processes that 
take place in structurally non-homogeneous layers. The development of a method of the theory 
of functions that satisfy these equations considerably broadens the opportunities for analysing 
various physical processes. 

2. Contrary to the plane-parallel case, we introduce the complex potential for axisym- 
metric processes in the form 

w = rp + igiy = g, - 2*42 - f) 
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which in the complex half-plane z (Imz>O) satisfies the following equation obtained from 
system (1.2): 

8W W-W 
-x----=0 2(.---1) (2.1) 

Note that the complex conjugate velocity of the process v = u - iv is determined by 
an equation of the same form (2.1). 

The continuous function W(z) of the complex variable s that satisfies Eq.(2.1) in 
some domain in the half-plane z(Im z >:O) will be called an axisymmetric generalized 
analytical function in this domain. 

Let us list some fundamental properties of the function W(z) that follow from its 
definition. By the linearity,of Eq.(2.1), its solutions satisfy the superposition principle. 
A trivial solution of Eq.(2.1) is the generalized constant A = a - 2p/(z -Z), where a and 
P are abitrary real constants (this is also the meaning of these symbols in what follows); 
this solution corresponds, for instance, to a liquid at rest. 

An analogoue of Liouville's theorem of the theory of analytical functions for w (4 is 
stated as follows: if the modulus of W(z) in the entire half-plane z (Imr> 0), including 
the point at infinity, is bounded and does not exceed the modulus of a generalized constant 
( I W (4 I < I A I), then w (4 is a generalized constant. Hence, it follows that a func- 
tion W (2) which is not equal to A must have singular points, which are models of physical 
sources of processes. 

Eq.I2.1) is conformally covariant. Among the conformal transformations, it is interesting 
to consider inversion relative to a sphere of xadius a centred at the origin. This trans- 
formation is defined as follows: if some function W,(z) satisfies Eq.(2.1), then 

is also a solution of this equation. The values of p and o are determined by the form of 
the function W,(z): if the singular points of WC! (4 lie outside the sphere and ( W,(z) 1 = 
0( 12 I”) as 12 )+O, then p = 0, c> - n; if there are singular points inside the sphere 
and 1 W, (z) 1 = 0 ( I z I-"-') as Jzl+m, then p= WV u< n + 1; here and in what follows, 
n = 1, 2, 3, . . . , unless otherwise stated. 

3. For the function w (4 which is single-valued and continuous in some simply con- 
nected domain D in the half-plane, we introduce the operations of differentiation and in- 
tegration. 

We denote by &Wldz or W, the E-derivative of W, 
in D it satisfies Eq.(2.1), i.e., 

which is defined so that everywhere 

Comparing (3.1) with (1.2), we obtain the equality W, = v, which discloses the physical 
meaning of W,. 

The C-integralofwalong a piecewise-smooth contour C inside the domain D is defined as 

The hydrodynamic interpretation of the C-integral follows from the equality for V 

cc F d,j = I- - II/[n (z -E)] 

(3.2) 

where r and II are the circulation and the velocity flux of the fluid evaluated for the 
contour C. 

Since W(z) satisfies Eq.(2.1), the E-integral is independent of the choice of the con- 
tour C and is entirely characterized by the position of its initial point z0 and final point 
2. Therefore, the C-integral viewed as a function of its upper limit z defines the function 
W*(z) by the equality 
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f w (5) d& = w* (2) - we* (We* = ‘P* (20) - 29 kd/(z -3 
(3.4) 

r. 

(WO* is the generalized constant), which is an anaIogue of the Newton-Leibniz formula for 
analytical functions. 

Separating the real and imaginary parts in (3.21 and (3.4~, we obtain a standard ex- 
pression for the integration operator /2, 5/. 

For a closed contour C, we obtain from (3.4) the equality 

which may be regarded as a generalization of Cauchy's theorem: if W(e) is an axisymmetric 
generalized analytical function in a simplyconnected domainD,then the C-integral of W(z) 
over any piecewise-smooth contour C entirely contained in D vanishes. 

The converse of the generalized Cauchy theorem may be called Morer's theorem. It 
provides an alternative definition of the function W(z), which is equivalent to the previous 
definition based on Eq.(2.1) or to the definition introduced using the condition for the L- 
derivative (3.1) to exist. 

Formulas (3.1) and (3.4) are the basis for constructing complex potentials of a process 
given a known complex potential. 

4. Among the solutions of Eq.(2.1) the fundamental solutions that model a ring source 
(sink) of capacity Q and a ring vortex of total intensity I" are of fundamental importance. 
Their complex potentials, according to /4, 6, 8/, can be represented in the form 

w = - -& {K (k) + i +$ [n,Tl (- n12, k) -- K (k)]} (4.1) 

W = &- {T [n,‘Il (- nip, k) - K(k)] - ikeC (k)} 

fk = 2%/R,, n,: = 4yy,/(y + Y,)~, nla + a'; = 1, R, = I(z - q,)* + 

(Y + Yw) 

where K (k), C (k) and II.(--n12, k) are complete elliptic integrals /9/ of modulus k and nl* 
is a parameter. 

Since the complex potential W is defined, apart from an arbitrary generalized constant, 
this constant may be chosen so that the complex potentials (4.1) are single-valued functions 
(see /6/). These complex potentials have logarithmic singularities at the point zO = rO + iy,. 

Using the solutions (4.1), we can apply the superposition principle to derive the complex 
potentials of other axisymmetric processes. 

The determination of complex potentials by condensation of singularities may be reduced 
to E-differentiation of the solutions (4.1). We introduce a complex potential of a vertical 
source with a logarithmic singularity at the point zO: 

In 2 (2, zO, a, fl) = aF, (2, 23 - @F, (z, zO)/(z, - IO) (4.2) 
where F1 (z,z,) and F,(z,z,) are normalized complex potentials (4.1) with Q = 4nP and 
r' = 4nSy,. 

In what follows, we will use negative formal powers, which may be defined as the n-th 
order E-derivative of (4.2), i.e., 

(- I)~ d," 
.P' (z, z,,a,B) = ("--1)1 F in Z(z, so, a,@ 

We then obtain the complex potentials of multipoles with moments M,: 

w, = -g (n - l)! z’-“’ (z. zo, CL B) 

From (4.1)-(4.4) for n = 1, a = cos S,, fJ = sin 8,, we obtain the complex potential of a 
dipole of moment Ml directed at an angle 6, to the x-axis: 

WIZ_&g l {[B(k) + k’aD (k) e-i*et] [Z - x0 - i (y - y,)] - (4.5) 
- i2y,k’aD (k) e-i@,) 

(R = [(I - s,# + (y - yO)21’/., k’ = 1/D). 
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where B (k) and D (A) are complete elliptic inteqrals of modulus k/g/andk'is an 
additional modulus. 

For n=2,3,4 ,..., we obtain from (4.1)-(4.4) the corresponding complex potentials 
of the multipole at the point zO. If the multipoles are located at the origin (z,, = 0), then 
setting a = 1, fi = 0, we obtain 

z'-"'(z) = r-n-1 P,(cosEl)- i 
[ 

-+,'(cost3)] (4.6) 

where P, (cos 6) are Legendre polynomials. In this case, 

M 
W, = - en! z'-"'(z) 

A positive formal power Z@)(z,z,,u, fl) is defined as the complex potential W,, obtained 
by n-fold E-integration from z0 to z of the generalized complex constant a-28/(2--) 
and multiplication by n:, i.e., 

Z(O) (2, zo, a, f3) = a - * , Z'"' (2. zo, a, fi) = n i Zl(“-‘) (c, zo, a, f3) drj 
(4.7) 

4 

The powers (4.7) define complex potentials of multipoles with n-th order poles at 
infinity. The form of these powers depends on the choice of a, p,and zO. In particular, 
for a=1,p=O and z,, = 0, they take the simplest form 

z@$) = P[ P, (cos e) + i s P,’ (cos e)] tn = 0, I, 2, . . .) (4.8) 

5. One of the approaches to the investigation of boundary-value problems relies on a 
generalization of the Cauchy integral. Using Green's second formula for Eqs.tl.2) and applying 
the solutions (4.11, we obtain the generalized Cauchy formula 

2ni i Sw(5)n_(z.5)d6-W(b)R,(Z~S)dS=(W~f)~ z,‘,“, 
c 

which expresses the axisymmetric generalized analytical function w (a) 
on the boundary C of the domain D. The integral on the left-hand side 
Cauchy integral, whose kernels 

(5.1) 

in terms of its values 
is the generalized 

unlike those introduced in 16, 71, have an obvious physical interpretation: 
ible in terms of normalized (M, = 4n*) complex potentials zul and w,' of 
with moments parallel and perpendicular to the x-axis. 

they are express- 
the dipoles (4.5) 

Replacing W(6) in (5.1) with a continuous function f (9, we obtain a generalized 
Cauchy integral, which defines an axisymmetric generalized analytical function W(Z). For this 
function, we can prove an analogue of Sokhotskii's formulas, the analytical continuation 
theorem, and the reflection principle. 

6. A different approach to the solution of boundary-value problems is by expanding the 
axisymmetric generalized analytical function W(z) in formal power series, which is possible 
for solving equations of the form (2.1) (see, e.g., /3/J. 

The function W(z) in a circle of radius R, centred at the point z,, can be 
represented by the generalized Taylor series in powers (4.7), i.e., 

W (2) = jj 2’“’ (2. lo, a,, fl,) 
,,=cl 

where the real coefficients a,, and fi. are determined from the equalities 

(‘3.‘) 
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which are obtained by n-fold C-differentiation of this series. In particular, if series 

(6.1) consists of the powers (4.8) and contains either all powers or only odd or even powers, 
then we obtain functions which are analogues of the corresponding analytical functions: the 
exponential, the sine, or the cosine functions. 

In the xing (R,< )I - z. J<R,), the function W(z) can be represented as a general- 
ized Laurent series in powers (4.3) and (4.7), i.e., 

By (3.5) and (6.21, we can assert that W(z) satisfies an equality generalizing the 
expression of the main theorem on residues of analytical functions, i.e., 

Here C, are non-intersecting contours encircling the isolated singularities zV of the func- 
tion W(z) and entirely contained inside the closed contour C,. 

Thus, the foundations of the theory of axisymmetric generalized analytical func- 
tions presented above constitute a complete analogue of the basic propositions of the theory 
of analytical functions and provide a method of analysing dynamic processes. 

7. Let us use the method of axisymmetric generalized analytical functions to analyse 
three-dimensional seepage in a piecewise-homogeneous medium separated by the surface L into 
zones with permeability coefficients k, and k,, where the flow is described by the complex 
potentials 

Wj = kjqj - Zlpji(z - 3) (i = I, 2) 

The conditions of continuity for the pressure and fluid flux are satisfied on L. For 9t 
these conditions have the form /l, lOi 

9% IL = '~a tc, k,cpl, IL = k,cp,, IL (7.1) 

If L is a sphere or a plane, 
form. 

the solution of the problem can be represented in a finite 

Assume that the flow in the unbounded medium with permeability coefficient Jc, (we take 
(k, = 1) is described by the complex potential W,(z) = q+, - Z&&z -Z), the singular points 
of which are located arbitrarily relative to a sphere of radius a centred at the origin. 
This potential can be represented in the form 

WO (2) = WO, (2) + w,* (2) 

where the singular points of W,,(z) and Wo2 (4 lie inside and outside the sphere, and 

l W,,(z)1 = 0 ( 1 2 I”), I 2 I -+ 0; I WP, (41 = 0 ( I 2 I-“-‘). I z I -+ m 

If the exterior and the interior of the sphere are filled with media with permeability 
coefficients k, and k, respectively, then the complex flow potentials inside and outside 
the sphere are 

The solution (7.2) satisfies conditions (7.1). It was obtained by expanding (6.2) in 
series in powers (4.6) and (4.8) and then generalizing by formula (2.2) to the case of an 
arbitrary location of the singular points of W,(Z). 

In particular, if the medium inside the sphere is impervious (k, = 0 and therefore 
h = I), the solution (7.2) takes the form of Weiss and Butler theorems fora sphere in an 
axisymmetric ideal fluid flow (see, e.g., /ll/). For k, = DO@,= -1). the solution (7.2) 
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describes the flow past a spherical cavern. If the sphere is surrounded 
by an impervious medium k, = 0 or by a free fluid k, =CO, then (7.2) defines the flow 
inside the sphere. 

Assume that the boundary L is the plane z = 0 and the regions r>O and s<O are 
filled by media with permeability coefficients k, and k,. Considering this case as the limit 
of the previous case, we obtain the solution 

w, = w, (2) + k IW,, l--Z) + w,, (z)I, w, = w, (2) - h IW,, (z) + (7.3) 

wcl, (-91 

Solutions (7.2) and (7.3) are of interest for analysing various dynamic processes 
described by Eqs.cl.1). 

I am grateful to P.Ya. Polubarinova-Kochina and O.V. Golubev for their interest in this 
research and for discussing the results. 
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